

### Open and Competitive Multilingual Neural Machine Translation in Production

Andre Tättar<sup>1</sup>, Taido Purason<sup>1</sup>, Hele-Andra Kuulmets<sup>1</sup>, Agnes Luhtaru<sup>1</sup>, Liisa Rätsep<sup>1</sup>, Maali Tars<sup>1</sup>, Mārcis Pinnis<sup>2</sup>, Toms Bergmanis<sup>2</sup>, Mark Fishel<sup>1</sup>

<sup>1</sup>University of Tartu

<sup>2</sup>Tilde

## Introduction

#### **MTee Project**

## **Estonian governmental project** (April 2021 to January 2022) carried out by **University of Tartu** and **Tilde**.

Organised by Estonian Ministry of Education and Research as a public procurement via the Language Technology Competence Center (Institute of the Estonian Language)

#### Enable **faster distribution of information** in times of crisis with open and competitive multilingual neural machine translation.





### Introduction

Translation directions:

Domains:



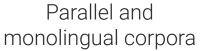


TARTUNLP>

### Introduction

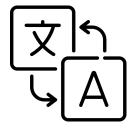
### Outcomes







Public benchmarks



Open-source NMT systems





### **Data Sources**

#### 1) Open Sources:

- $\circ$  OPUS
- $\circ$  ELRC-SHARE
- EU Open Data Portal
- $\circ$  Meta-Share
- $\circ$  CLARIN
- $\circ$  ELRA

#### 2) Web Scraping

- E.g. state news and other governmental sites
- 3) Data Donors and Industry Partners



# **Pre-processing**

### Filtering using OpusFilter

#### Parallel data:

- Duplicates
- Sentence length ratio
- Maximum sentence length
- Maximum word length
- Maximum word count
- Foreign word
- Digit mismatch
- Statistical word alignment
- Test data overlap

#### Monolingual data:

- Maximum sentence length
- Maximum word length
- Parallel filters after back-translation

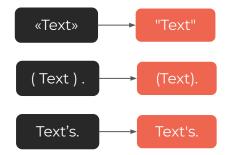


# **Pre-processing**

### Normalization

Normalize punctuation and whitespace.

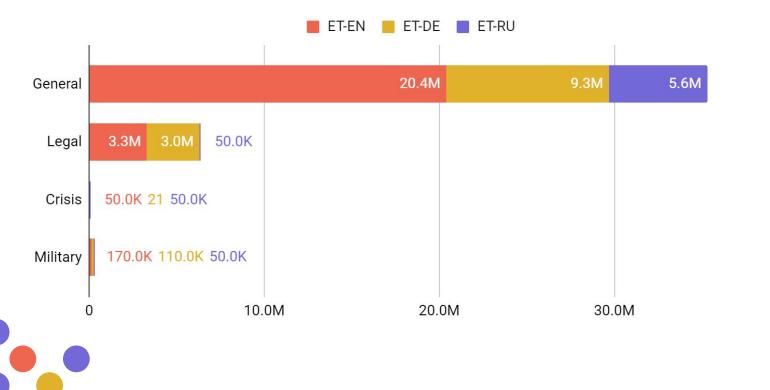
Customized Moses Statistical MT normalization script.







## **Training Data**

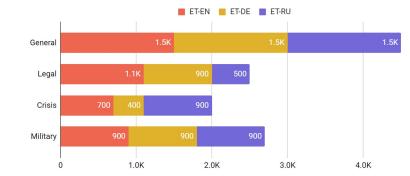




### **Test Data**

#### Manually filtered/corrected the data with annotators

Validation dataset





#### Test dataset

# **Monolingual data**

|    | General | Military | Legal | Crisis      |
|----|---------|----------|-------|-------------|
| ET | 50M     | 0.9M     | 0.5M  | 0.6M        |
| EN | 48.9M   | 1.5M     | 0.3M  | 10 <b>M</b> |
| DE | 49.3M   | 130K     | 0.6M  | 3.4M        |
| RU | 49.6M   | 8K       | 5.4M  | 142K        |





# Segmentation model

#### SentencePiece BPE

Separate model for each language.

- Trained on 10,000,000 sentences sampled from the dataset
- Vocabulary size of 24,000
- Character coverage of 0.9999
- Finally, add top-500 characters (across whole dataset) to each model

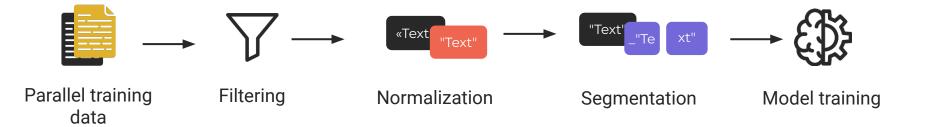




TARTUNLOS

## **Data Processing Overview**

### Training

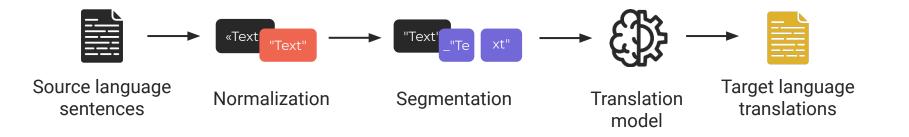




TARTUNLOS

# **Data Processing Overview**

#### Translation





### **Model Architectures**

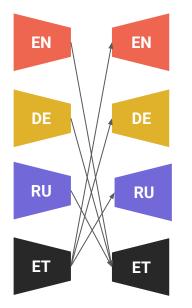








Unidirectional models



Language-specific encoders/decoders (our approach)

TARTUNLPS

# **Model Training**

**Jointly trained language-specific encoders-decoders** (modular)

Custom **Fairseq** implementation (open-sourced) Transformer base encoders-decoders (6-6)

Steps:

- ) Train general model (whole dataset inc. domain)
- 2) Fine-tune domain models
- 3) Back-translate and repeat



## **Data augmentation**

Back-translations

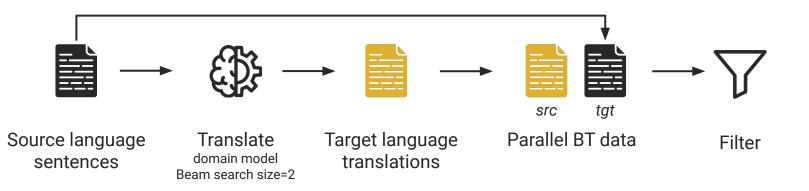
Estonian Proper Nouns

Spoken language





### **Back-translation**





Resulting in ~54M new parallel sentences per direction (325M in total)

# **Estonian Proper Nouns**

Data for some languages contains no diacritics common in Estonian ( $\tilde{o}$ ,  $\ddot{a}$ ,  $\ddot{o}$ ,  $\ddot{u}$ ,  $\check{s}$ ,  $\check{z}$ ). Thus the model does not know how to translate them when they occur.

Augment the dataset using Tatoeba (Tom & Mary) and collected Estonian proper nouns containing the diacritics.

- 1650 sentence pairs for DE-ET
- 20241 sentence pairs for EN-ET

You know who **Tom** is, don't you? - Sa ju tead, kes on **Tom**?

You know who Tonis is, don't you? - Sa ju tead, kes on Tonis?



# Spoken Language

Sub-word level **insertion**, **substitution**, and **deletion operations** with fixed probabilities derived from speech recognition output.

| Validation      | baseline | ft 95-5 | ft 90-10 | ft 75-25 | ft 50-50 |
|-----------------|----------|---------|----------|----------|----------|
| MT              | 39.9     | 39.7    | 39.7     | 39.6     | 39.4     |
| ASR translation | 32.4     | 32.8    | 32.7     | 32.4     | 32.2     |

**BLEU** scores

Speech translation fine-tuning this way is not beneficial, use general model.



# **Training Summary**

- 1) Training on whole parallel dataset and augmented NE data
- 2) Fine-tune general model with parallel domain data
- 3) Second training iteration with whole data from (1), and the whole back-translated dataset (yielding final general model)
- 4) **Fine-tune final general model** on **domain data**, sample back-translated domain data if there are fewer than 50,000 sentences



### **Domain Detection**

#### Fine-tuned XLM-Roberta

| Metric          | General | Legal | Crisis | Military |
|-----------------|---------|-------|--------|----------|
| Precision       | 0.61    | 0.77  | 0.88   | 0.85     |
| Recall          | 0.84    | 0.80  | 0.57   | 0.49     |
| <b>Recall</b> * | 0.84    | 0.97  | 0.94   | 0.87     |

Recall\* - True positive is either correct domain or general domain



## **Evaluation**

#### Benchmarks

Selected monolingual data and translated by translators.

| Domain            | ET-EN | ET-DE | ET-RU |
|-------------------|-------|-------|-------|
| General           | 1152  | 1166  | 1126  |
| Legal             | 500   | 500   | 500   |
| Crisis            | 500   | 500   | 500   |
| <b>Crisis-doc</b> | 177   | 177   | 177   |
| Military          | 500   | 500   | 500   |
| Military-doc      | 194   | 194   | 194   |
| Spoken            | 1602  | 1602  | 1602  |



### **Translation Evaluation**

Automatic metrics

#### BLEU

chrF

COMET

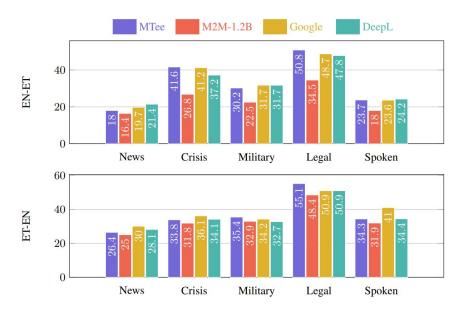


TARTUNLP>

### **Results**

 $EN \leftrightarrow ET$ 

DeepL and Google outperform MTee except for legal and EN-ET crisis.



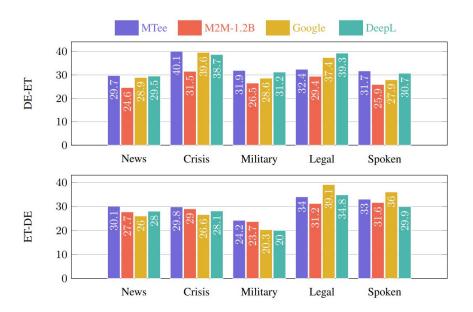


TARTUNLP>

### Results

 $DE \leftrightarrow ET$ 

MTee achieves the best results in every domain except legal.

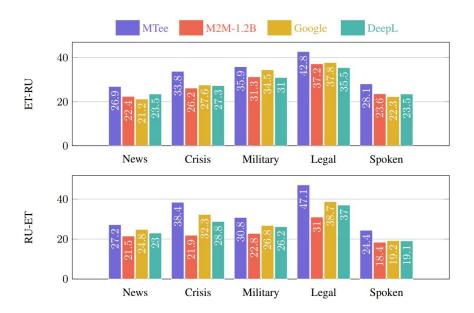




### Results

 $RU \leftrightarrow ET$ 

MTee outperforms the other systems in all domains.







### **Results**

# With domain detection (crisis)

### Apply domain detection (*dd*) before inference

base - general model ft - fine-tuned with domain data ft+gen - fine-tuned with domain data and general data

| B | L | E | U |
|---|---|---|---|
|   |   |   |   |

|       | base | ft   | ft+gen | dd+ft | dd+ft+gen |
|-------|------|------|--------|-------|-----------|
| ET-EN | 34.3 | 36.1 | 35.9   | 35.6  | 35.9      |
| ET-DE | 29.8 | 31.3 | 29.8   | 30.7  | 29.7      |
| ET-RU | 34.7 | 35.7 | 33.7   | 35.4  | 33.7      |
| EN-ET | 41.9 | 42.5 | 35.5   | 41.8  | 36.5      |
| DE-ET | 46.6 | 49.1 | 43.8   | 40.2  | 39.7      |
| RU-ET | 39.0 | 39.2 | 33.7   | 38.1  | 33.6      |
| avg   | 37.7 | 39.0 | 35.4   | 37.0  | 34.9      |





### **Live Demo**

https://mt.cs.ut.ee/





## Conclusion

As a result of this project we have made available (**Open-source**):

- Monolingual and parallel data
- Benchmarks
- Translation models
- Demo





# Thank you!

www.tartunlp.ai

